
Computing with Catalan Families

Paul Tarau

Department of Computer Science and Engineering
University of North Texas

LATA’2014

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 1 / 23



Motivation

traditional number representation:
binary, decimal, base-N number arithmetics provide an exponential
improvement over unary “caveman’s” notation
quite resilient, staying fundamentally the same for the last 1000 years
computations are limited by the size of the operands or results
egalitarian: all numbers are treated the same way
little effort to take advantage of the structural uniformity of the operands,
when present
crashes quickly under heavy use of exponentials, e.g, towers of exponents

⇒ this paper is about how we can we do better if, in an alternative
numbering system, based on Catalan families, representation size of the
operands can be much smaller than their bitsizes

we propose an elitist representation: some numbers are treated more
favorably, while others “suffer” by a constant factor

“All animals are equal, but some animals are more equal than others.”
George Orwell, Animal Farm

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 2 / 23



Outline

1 Context

2 Notations for giant numbers vs. computations with giant numbers

3 Recursively run-length compressed natural numbers as objects of the
Catalan family

4 The bijection between natural numbers and Catalan objects

5 Mutually recursive successor and predecessor

6 Complexity of successor and predecessor

7 A few low complexity operations

8 “Structural complexity” as representation size

9 Conclusion

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 3 / 23



Some context

the first instance of a hereditary number system occurs in the proof of
Goodstein’s theorem (exponents are expanded recursively) – “hailstone
sequences reach 0” – “Hercules and hydra” game
notations for very large numbers have been invented in the past, all
non-canonical (multiple representations for the same number)

Knuth’s up-arrow notation covering operations like the tetration (a notation
for towers of exponents)
Knuth’s TCALC program that decomposes n = 2a +b with 0≤ b < 2a and
then recurses on a and b with the same decomposition
Vuillemin uses a similar exponential-based notation called “integer decision
diagrams”, providing a compressed representation for sparse integers, sets
and various other data types

the question we want answer: are there canonical and hereditary number
representations that can represent very large numbers and are closed
under arithmetic operations ?

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 4 / 23



Notations for vs. computations with giant numbers

notations like Knuth’s “up-arrow” are useful in describing very large
numbers
but they do not provide the ability to actually compute with them – as
addition or multiplication results in a number that cannot be expressed
with the notation
the novel contribution of this paper is a a Catalan family-based canonical
numbering system that allows computations with numbers comparable in
size with Knuth’s “up-arrow” notation
these computations have average and worst case complexity that is
comparable with the traditional binary numbers
their best case complexity outperforms binary numbers by an arbitrary
tower of exponents factor
⇒ a hereditary number system based on recursively applied run-length
compression of the usual binary digit notation
⇒ a concept of structural complexity is introduced, that serves as an
indicator of the expected performance of our arithmetic operations

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 5 / 23



A member of the Catalan family: Dyck words

The Catalan family of combinatorial objects spans over a wide diversity of
concrete representation ranging from balanced parentheses expressions and
rooted plane trees to non-crossing partitions and polygon triangulations

Definition
A Dyck word on the set of parentheses {L,R} is a list consisting of n L’s and
R’s such that no prefix of the list has more L’s than R’s.

Let T be the language obtained from the set of Dyck words on {L,R} with an
extra L parenthesis added at the beginning of each word and an extra R
parenthesis added at the end of each word.
⇒ words in T are self-delimiting (actually also “bifix-free”)

We represent the language T in Haskell as the type T and we will call its
members terms.

data Par = L | R deriving (Eq,Show,Read)
type T = [Par]

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 6 / 23



The “cons-list”-view

It is convenient to view T as the set of rooted ordered binary trees through the
operations cons and decons defined as:

cons :: (T,T) → T
cons (xs,L:ys) = L:xs++ys

decons :: T→(T,T)
decons (L:ps) = count_pars 0 ps where
count_pars 1 (R:ps) = ([R],L:ps)
count_pars k (L:ps) = (L:hs,ts) where
(hs,ts) = count_pars (k+1) ps

count_pars k (R:ps) = (R:hs,ts) where
(hs,ts) = count_pars (k-1) ps

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 7 / 23



The ordered rooted tree view

The forest of subtrees corresponds to the toplevel balanced parentheses
composing an element of T as defined by the bijections to_list and
from_list.

to_list :: T → [T]
to_list [L,R] = []
to_list ps = hs:hss where
(hs,ts) = decons ps
hss = to_list ts

We will call subterms the terms extracted by to_list.

from_list :: [T]→T
from_list [] = [L,R]
from_list (hs:hss) = cons (hs,from_list hss)

For complexity analysis we can assume that an ordered rooted tree data
structure is used for the language T, under which the from_list and
to_list operations are constant time.

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 8 / 23



The arithmetic interpretation of Catalan objects

the term t=[L,R] corresponds to zero

if xs is obtained by applying the to_list operation to t , then each x on
the list xs counts the number of b ∈ {0,1} digits, followed by alternating
counts of 1-b and b digits, with the conventions that the most significant
digit is 1 and the counter x represents x+1 objects

the same principle is applied recursively for the counters, until [L,R] is
reached.

by convention, as the last (and most significant) digit is 1, the last count
on the list xs is for 1 digits

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 9 / 23



Recognizing odd and even

The following simple fact allows inferring parity from the number of subterms of
a term.

Proposition

If the length of xs = to_list x is odd, then x encodes an odd number,
otherwise it encodes an even number.

Proof.
Observe that as the highest order digit is always a 1, the lowest order digit is
also 1 when length of the list of counters is odd, as counters for 0 and 1 digits
alternate.

This ensures the correctness of the Haskell definitions of the predicates odd_
and even_, the last defined true for terms different from [L,R] only.

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 10 / 23



Computing the function n : T→ N

Definition
The function n : T→ N shown in equation (1) defines the unique natural
number associated to a term of type T.

n(a) =


0 if a = [L,R],

2n(x)+1n(xs) where (x,xs) = decons a, if a is even_,

2n(x)+1n(xs)−1 where (x,xs) = decons a, if a is odd_.
(1)

For instance, the computation of [L,L,R,L,L,R,L,R,R,R] expands to
20+1(2(2

0+1(20+1−1))+1−1) = 14.
For complexity analysis we can assume that length information is stored, and
consequently the odd_ and even_ operations are constant time.

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 11 / 23



The bijection between T and N

Proposition
n : T→ N is a bijection, i.e., each term canonically represents the
corresponding natural number.

See explicitly computed inverse t : T→ N in the paper.

0: [L,R]
1: [L,L,R,R]
2: [L,L,R,L,R,R]
3: [L,L,L,R,R,R]
4: [L,L,L,R,R,L,R,R]
5: [L,L,R,L,R,L,R,R]

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 12 / 23



A DAG representation of our numbers

the DAG is obtained by folding together identical subterms at each level
we map “L” and “R” to “(” and “)”, for readability
integer labels mark the order of the edges outgoing from a vertex

(()(())(()())(()()())(())) => 12345

(()()()) => 5

3

(()()) => 2

2

(()) => 1

4 1

() => 0

0

2 1 0 1 0 0

Figure : The DAG illustrating the term associated to 12345

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 13 / 23



Successor

s x | e_ x = u -- 1
s x | even_ x = from_list (sEven (to_list x)) -- 7
s x | odd_ x = from_list (sOdd (to_list x)) -- 8

sEven (a:x:xs) |e_ a = s x:xs -- 3
sEven (x:xs) = e:s’ x:xs -- 4

sOdd [x]= [x,e] -- 2
sOdd (x:a:y:xs) | e_ a = x:s y:xs -- 5
sOdd (x:y:xs) = x:e:(s’ y):xs -- 6

Note that e_ recognizes e=[L,R], u=[L,L,R,R] represents 1, u_
recognizes u and s’ is the (mutually recursive) predecessor.

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 14 / 23



Predecessor

s’ x | u_ x = e -- 1
s’ x | even_ x = from_list (sEven’ (to_list x)) -- 8
s’ x | odd_ x = from_list (sOdd’ (to_list x)) -- 7

sEven’ [x,y] |e_ y = [x] -- 2
sEven’ (x:b:y:xs) | e_ b = x:s y:xs -- 6
sEven’ (x:y:xs) = x:e:s’ y:xs -- 5

sOdd’ (b:x:xs) | e_ b = s x:xs -- 4
sOdd’ (x:xs) = e:s’ x:xs -- 3

s and s’ are mutually recursive.

each call to s and s’ in s and s’ is on a term corresponding to a (much)
smaller natural number

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 15 / 23



s and s’ are inverses

Proposition

Denote T+ = T−{e}. The functions s : T→ T+ and s′ : T+→ T are
inverses.

Proof.
It follows by structural induction after observing that patterns for rules marked
with the number - k in s correspond one by one to patterns marked by - k
in s’ and vice versa.

More generally, it can be shown that Peano’s axioms hold and as a result
< T,e,s > is a Peano algebra.

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 16 / 23



Complexity of successor and predecessor

recursive calls to s, s’ in s, s’ happen on terms that are logarithmic
in the bitsize of their operands⇒ worst case time complexity of s and s’
is the given by the iterated logarithm (log∗) of their arguments

average size of a block is 2 bits (see paper for proof)⇒ average time
complexity of s is constant

experimentally: when computing successor on the first
230 = 1073741824 natural numbers, there are in total 2381889348 calls
to s, averaging to 2.2183 per successor and predecessor computation

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 17 / 23



A few low complexity operations

double and half

db x | e_ x = e
db xs | odd_ xs = cons (e,xs)
db xxs | even_ xxs = cons (s x,xs) where
(x,xs) = decons xxs

hf x |e_ x = e
hf xxs = if e_ x then xs else cons (s’ x,xs) where
(x,xs) = decons xxs

power of 2

exp2 x | e_ x = u
exp2 x = from_list [s’ x,e]

Proposition
The costs of db, hf and exp2 are within a constant factor from the cost of
s, s’ ⇒ log∗ worst case and constant on the average.

Proof.
It follows by observing that at most 2 calls to s, s’, o, o’ are made in
each.

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 18 / 23



What else we can compute with efficiency comparable to
binary arithmetic?

any enumeration on Catalan families can be seen as a Peano algebra, so
why is ours special?

⇒ with constant average time for double and half we can do binary
arithmetic efficiently!

⇒ we can also do better – various arithmetic operations on an equivalent
ordered rooted tree representation that work with effort proportional to our
Catalan objects’ representation size, rather than their bitsize at http:
//logic.cse.unt.edu/tarau/Research/2013/rrl.pdf

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 19 / 23

http://logic.cse.unt.edu/tarau/Research/2013/rrl.pdf
http://logic.cse.unt.edu/tarau/Research/2013/rrl.pdf


Computing representation sizes

bitsize x = sum (map (n.s) (to_list x))

tsize x =foldr add1 0 (map tsize xs) where
xs = to_list x
add1 x y = x + y +1

tsize corresponds to the function c : T→ N defined as follows:

c(t) =

{
0 if t= e,

∑x∈xs (1+ c(x)) if xs = to_list t.
(2)

Proposition

For all terms t ∈ T, tsize t ≤ bitsize t.

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 20 / 23



“Structural complexity” as representation size

for operations like s, s’, db, hf, exp2 worst case effort is
proportional to the depth of the tree

but the depth of the tree is proportional to the height of the corresponding
tower of exponents

for operations like addition, subtraction, comparison, the worst case is
proportional with the tree size of the smallest operand (not shown in the
paper) but see http:
//logic.cse.unt.edu/tarau/Research/2013/rrl.pdf
where these operations are implemented with an ordered rooted binary
tree data structure

so each time when “structural complexity” is < than bitsize we gain,

but as it is always ≤, we never loose

in the best case, we gain by an arbitrary tower of exponents factor

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 21 / 23

http://logic.cse.unt.edu/tarau/Research/2013/rrl.pdf
http://logic.cse.unt.edu/tarau/Research/2013/rrl.pdf


Best and worst case

best case: bitsize much larger than structural complexity

> bestCase (t 4)
[L,L,L,L,L,R,R,R,R,R]
> n it
65535
> (bitsize (bestCase (t 4)), tsize (bestCase (t 4)))
(16, 4)

2(2
(2(2

0+1−1)+1−1)+1−1)+1−1 = 2222

−1 = 65535.
worst case: bitsize the same as structural complexity

> worstCase (t 4)
[L,L,R,L,R,L,R,L,R,L,R,L,R,L,R,R]
> n it
85
> (bitsize (worstCase (t 4)), tsize (worstCase (t 4))
(7, 7)

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 22 / 23



Figure : Structural complexity (red line) vs. bitsize (green line) from 0 to 210−1

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 23 / 23



Conclusion

arithmetic computations using Catalan families instead of bitstrings can
be performed with in constant time or time proportional to their structural
complexity rather than their bitsize

bidirectional self-delimiting representation⇒ it makes easier correcting
transmission errors

our structural complexity is a weak approximation of Kolmogorov
complexity

⇒ random instances are closer to the worst case than the best case

still, best cases are important - humans in the random universe are a
good example for that :-)

Haskell code at http:
//logic.cse.unt.edu/tarau/research/2013/catco.hs

code with ordered rooted trees, complete set of operations: at: http:
//logic.cse.unt.edu/tarau/research/2013/rrl.hs

Paul Tarau (University of North Texas) Computing with Catalan Families LATA’2014 23 / 23

http://logic.cse.unt.edu/tarau/research/2013/catco.hs
http://logic.cse.unt.edu/tarau/research/2013/catco.hs
http://logic.cse.unt.edu/tarau/research/2013/rrl.hs
http://logic.cse.unt.edu/tarau/research/2013/rrl.hs

	Context
	Notations for giant numbers vs. computations with giant numbers
	Recursively run-length compressed natural numbers as objects of the Catalan family
	The bijection between natural numbers and Catalan objects
	Mutually recursive successor and predecessor
	Complexity of successor and predecessor
	A few low complexity operations
	``Structural complexity'' as representation size
	Conclusion

