On Computability and Learnability of the Pumping Lemma Function

Dariusz Kalociński

University of Warsaw, Poland

March 11, 2014 8th International Conference, LATA 2014

Structure

- what is the pumping lemma function?
- how complex is it?
 - computable?
 - ► learnable?
- exact placement of the function in the arithmetical hierarchy

Structure

- what is the pumping lemma function?
- how complex is it?
 - computable?
 - ► learnable?
- exact placement of the function in the arithmetical hierarchy
- ▶ on the way: we get a ,,natural" Π_2^0 -complete problem
- final remarks

Pumping Lemma (for Regular Languages)

For regular $L \subseteq \Sigma^*$ $(\exists \, c > 0 \,)$

Pumping Lemma (for Regular Languages)

For regular $L \subseteq \Sigma^*$ $(\exists c > 0)$

$$|\alpha\beta| \le c$$

$$\triangleright \beta \neq \varepsilon$$

$$(\forall i \in \mathbb{N}) \, \alpha \beta^i \gamma \in L$$

Pumping Lemma (for Regular Languages)

For regular
$$L \subseteq \Sigma^*$$
 $(\exists c > 0)$

$$(\forall \omega \in L, |\omega| \geq c) (\exists \alpha \beta \gamma)$$
:

- $\Delta \beta \gamma = \omega$
- $|\alpha\beta| \leq c$
- $\beta \neq \varepsilon$
- $(\forall i \in \mathbb{N}) \alpha \beta^i \gamma \in L$

- $\phi(L,c)$ formula in yellow box
- $ightharpoonup \phi(L,c)$ means: for given L, c is the witness for $\exists c$
- c satisfying $\phi(L,c)$ is called a pumping constant for L

Problem

Input: arbitrary L

Output: the least pumping constant for L (if exists)

- we focus on r.e. languages
- W_e = the domain of the e^{th} algorithm
- ▶ L is r.e. $\Leftrightarrow \exists e (L = W_e)$
- ▶ $R(e, c) \Leftrightarrow_{df} c$ is a pumping constant for W_e

Pumping Lemma Function

$$f(e) = \left\{ egin{array}{ll} ext{the least c st. } R(e,c) & ext{if } \exists c R(e,c) \ ext{undefined} & ext{otherwise} \end{array}
ight.$$

Questions

$$R(e,c) \Leftrightarrow_{df} c$$
 is a pumping constant for W_e $f(e) = \left\{egin{array}{ll} ext{the least } c ext{ st. } R(e,c) & ext{if } \exists c R(e,c) \ ext{undefined} & ext{otherwise} \end{array}
ight.$

$$Graph(f) = \text{the graph of } f = \{(x, y) : f(x) = y\}$$

How complex are f and R?

- ▶ is f computable?
- ▶ is $\overline{Graph(f)}$ r.e.?
- ▶ is f algorithmically learnable?
 - ightharpoonup if not, how strong oracle we need to make f learnable?
- ▶ how exactly does Graph(f) fit in arithmetical hierarchy?
- ▶ how exactly does *R* fit in arithmetical hierarchy?

Is f computable?

We need

- ▶ EMPTY = $\{e \in \mathbb{N} : W_e = \emptyset\}$
- ▶ EMPTY is Π_1^0 -complete
- $ightharpoonup \leq_{rec}$ reducibility via recursive function
- ▶ $R(e, c) \Leftrightarrow_{df} c$ is a pumping constant for W_e

Lemmas

- ► EMPTY <_{rec} R
- ▶ If R(e, c) then $(\forall d > c) R(e, d)$.

Theorem

f is not computable

Proof.

Suppose the contrary. Then R is Σ_1^0 . Let $A \in \Pi_1^0$. $A \leq_{rec} \mathsf{EMPTY} \leq_{rec} R \in \Sigma_1^0$. Hence, $\Pi_1^0 \subseteq \Sigma_1^0$.

Is $\overline{Graph(f)}$ r.e.?

We need

- ▶ EMPTY = $\{e \in \mathbb{N} : W_e = \emptyset\}$
- ▶ EMPTY is Π_1^0 -complete
- $ightharpoonup \leq_{rec}$ reducibility via recursive function
- $lackbox{R}(e,c) \Leftrightarrow_{\mathit{df}} c$ is a pumping constant for W_e

Lemmas

- ▶ $\overline{\textit{Graph}(f)} \in \Sigma_1^0 \Rightarrow \overline{R} \in \Sigma_1^0$
- $ightharpoonup \overline{\mathsf{EMPTY}} <_{\mathsf{rec}} R$

Theorem

 $\overline{Graph(f)}$ is not r.e.

Proof.

Suppose the contrary. By lemma $\overline{R} \in \Sigma^0_1$. Since $\overline{\mathsf{EMPTY}} \leq_{\mathit{rec}} R$, then $\mathsf{EMPTY} \leq_{\mathit{rec}} \overline{R}$. Hence, $\Pi^0_1 \subseteq \Sigma^0_1$. \pounds

Learnability

Definition

 $f: \mathbb{N}^k \to \mathbb{N}$ (possibly partial) is learnable if there is a total computable function $g_t(\overline{x})$ st. for all $\overline{x} \in \mathbb{N}^k$:

$$\lim_{t\to\infty} g_t(\overline{x}) = f(\overline{x}) ,$$
 (1)

which means that one of the two conditions hold:

- ▶ neither $f(\overline{x})$ nor $\lim_{t\to\infty} g_t(\overline{x})$ exist
- ▶ both $f(\overline{x})$ and $lim_{t\to\infty}g_t(\overline{x})$ exist and are equal

Example

$$f(x) = 5$$

Is f learnable?

We need

- ▶ TOT = $\{e : W_e = \Sigma^*\}$
- ► TOT is Π_2^0 -complete
- ▶ Gold's lemma: f is learnable \Leftrightarrow $Graph(f) \in \Sigma_2^0$
- ▶ $R(e, c) \Leftrightarrow_{df} c$ is a pumping constant for W_e

Lemma

 $TOT <_{rec} R$

Theorem

f is not learnable

Proof.

Suppose the contrary. Then $Graph(f) \in \Sigma_2^0$. We have:

$$R(x,y) \Leftrightarrow \exists c((x,c) \in Graph(f) \land c \leq y) \Leftrightarrow \exists (\exists \forall \ldots \land \ldots). \text{ So}$$

$$R \in \Sigma^0_2$$
. But by lemma TOT $\leq_{rec} R$. Hence, TOT $\in \Sigma^0_2$. \nleq

How complex oracle does make *f* learnable?

We need

- ▶ HALT = the halting problem = $\{(e, x) : x \in W_e\}$
- $ightharpoonup \leq_{bl}$ bounded lexicographical order on words
- ▶ Gold's lemma: f is learnable \Leftrightarrow $Graph(f) \in \Sigma_2^0$

Theorem

f is learnable in HALT.

Proof.

$$R(e,x) \Leftrightarrow$$

rec. in HALT

(
$$\forall \omega$$
) {[$\omega \in W_e \land \ldots$] \Rightarrow ($\exists \alpha, \beta, \gamma \leq_{bl} \omega$)[$formular$]. $\land (\forall i)$ $\alpha \beta^i \gamma \in W_e$)]}

 $R(e, x) \Leftrightarrow \forall [\ldots \Rightarrow \forall \ldots], \text{ so } R \in \Pi^0_1 \text{ in HALT}.$

(e, x) $\in Graph(f) \Leftrightarrow R(e, x) \land (\forall y < x) \neg R(e, y)$
 $\Pi^0_1 \text{ in HALT}$
 $\Sigma^0_1 \text{ in HALT}$

Hence, $Graph(f) \in \Sigma_2^0$ in HALT and f is learnable in HALT.

How complex is R?

We need

- ▶ HALT = the halting problem = $\{(e, x) : x \in W_e\}$
- ▶ $\mathsf{TOT} = \{e : W_e = \mathbb{N}\}$
- ► TOT is Π⁰₂-complete
- ▶ $R(e,c) \Leftrightarrow_{df} c$ is a pumping constant for W_e

Lemma

 $TOT <_{rec} R$

Theorem

R is Π_2^0 -complete

Proof.

R is Π_2^0 -hard, since $\mathsf{TOT} \leq_{\mathit{rec}} R$ $x \in W_e \Leftrightarrow \exists \ c \ T(e, x, c), \ T$ - Kleene predicate $R(e, x) \Leftrightarrow \forall [\exists \ldots \Rightarrow \exists^{\leq_{\mathit{bl}} \omega} (\ldots \land \forall \exists \ldots)]$ Hence, $R \in \Pi_2^0$.

f - exact place in arithmetical hierarchy

Lemmas

- $Graph(f) \in \Delta_3^0$ (see paper)
- $Graph(f) \notin \Sigma_2^0$ (proved)
- ▶ $R(e, c) \Leftrightarrow_{df} c$ is a pumping constant for W_e
- ightharpoonup R is Π_2^0 -complete (proved)

Theorem

$$Graph(f) \in \Delta_3^0 - (\Sigma_2^0 \cup \Pi_2^0)$$

Proof.

We show $Graph(f) \notin \Pi_2^0$. Suppose the contrary.

Now show $R \leq_T Graph(f)$. Algorithm with oracle Graph(f) that computes χ_R : on input (e,x) output YES iff $(e,y) \in Graph(f)$ holds for some $y \leq x$. Hence, $\overline{R} \leq_T Graph(f)$.

Since R is Π_2^0 -complete, \overline{R} is Σ_2^0 -complete. Let $A \in \Sigma_2^0$. We have $A <_T \overline{R} <_T Graph(f)$. Then $\Sigma_2^0 \subset \Pi_2^0$.

Final remarks

- what about other input representations?
 - ► CFGs: f learnable
 - oracle for characteristic function
 - ▶ f learnable
 - use in language identification?
 - time bounded Turing machines
 - ▶ f learnable

