
On Computability and Learnability of the
Pumping Lemma Function

Dariusz Kalociński

University of Warsaw, Poland

March 11, 2014
8th International Conference, LATA 2014

Structure

I what is the pumping lemma function?
I how complex is it?

I computable?
I learnable?

I exact placement of the function in the arithmetical hierarchy

I on the way: we get a ,,natural” Π0
2-complete problem

I final remarks

Structure

I what is the pumping lemma function?
I how complex is it?

I computable?
I learnable?

I exact placement of the function in the arithmetical hierarchy

I on the way: we get a ,,natural” Π0
2-complete problem

I final remarks

Pumping Lemma (for Regular Languages)

For regular L ⊆ Σ∗ (∃ c > 0)

(∀ω ∈ L, |ω| ≥ c) (∃αβγ):

I αβγ = ω

I |αβ| ≤ c

I β 6= ε

I (∀ i ∈ N)αβiγ ∈ L

I φ(L, c) - formula in yellow box

I φ(L, c) means: for given L, c is the witness for ∃ c
I c satisfying φ(L, c) is called a pumping constant for L

Pumping Lemma (for Regular Languages)

For regular L ⊆ Σ∗ (∃ c > 0)

(∀ω ∈ L, |ω| ≥ c) (∃αβγ):

I αβγ = ω

I |αβ| ≤ c

I β 6= ε

I (∀ i ∈ N)αβiγ ∈ L

I φ(L, c) - formula in yellow box

I φ(L, c) means: for given L, c is the witness for ∃ c
I c satisfying φ(L, c) is called a pumping constant for L

Pumping Lemma (for Regular Languages)

For regular L ⊆ Σ∗ (∃ c > 0)

(∀ω ∈ L, |ω| ≥ c) (∃αβγ):

I αβγ = ω

I |αβ| ≤ c

I β 6= ε

I (∀ i ∈ N)αβiγ ∈ L

I φ(L, c) - formula in yellow box

I φ(L, c) means: for given L, c is the witness for ∃ c
I c satisfying φ(L, c) is called a pumping constant for L

Problem
Input: arbitrary L
Output: the least pumping constant for L (if exists)

I we focus on r.e. languages

I We = the domain of the eth algorithm

I L is r.e. ⇔ ∃ e (L = We)

I R(e, c)⇔df c is a pumping constant for We

Pumping Lemma Function

f (e) =

{
the least c st. R(e, c) if ∃cR(e, c)

undefined otherwise

Questions

R(e, c)⇔df c is a pumping constant for We

f (e) =

{
the least c st. R(e, c) if ∃cR(e, c)

undefined otherwise

Graph(f) = the graph of f = {(x , y) : f (x) = y}

How complex are f and R?

I is f computable?

I is Graph(f) r.e.?
I is f algorithmically learnable?

I if not, how strong oracle we need to make f learnable?

I how exactly does Graph(f) fit in arithmetical hierarchy?

I how exactly does R fit in arithmetical hierarchy?

Is f computable?

We need

I EMPTY = {e ∈ N : We = ∅}
I EMPTY is Π0

1-complete

I ≤rec - reducibility via recursive function

I R(e, c)⇔df c is a pumping constant for We

Lemmas

I EMPTY ≤rec R

I If R(e, c) then (∀ d > c)R(e, d).

Theorem
f is not computable

Proof.
Suppose the contrary. Then R is Σ0

1. Let A ∈ Π0
1.

A ≤rec EMPTY ≤rec R ∈ Σ0
1. Hence, Π0

1 ⊆ Σ0
1.

Is Graph(f) r.e.?

We need

I EMPTY = {e ∈ N : We = ∅}
I EMPTY is Π0

1-complete

I ≤rec - reducibility via recursive function

I R(e, c)⇔df c is a pumping constant for We

Lemmas

I Graph(f) ∈ Σ0
1 ⇒ R ∈ Σ0

1

I EMPTY ≤rec R

Theorem
Graph(f) is not r.e.

Proof.
Suppose the contrary. By lemma R ∈ Σ0

1. Since EMPTY ≤rec R,
then EMPTY ≤rec R. Hence, Π0

1 ⊆ Σ0
1.

Learnability

Definition
f : Nk → N (possibly partial) is learnable if there is a total
computable function gt(x) st. for all x ∈ Nk :

limt→∞gt(x) = f (x) , (1)

which means that one of the two conditions hold:

I neither f (x) nor limt→∞gt(x) exist

I both f (x) and limt→∞gt(x) exist and are equal

Example
f (x) = 5

0 1 2 1 7 5 5 5
|| || || || || || || ||

g0(x) g1(x) g2(x) g3(x) . . . g1487(x) g1488(x) g1489(x) . . .

Is f learnable?

We need

I TOT = {e : We = Σ∗}
I TOT is Π0

2-complete

I Gold’s lemma: f is learnable ⇔ Graph(f) ∈ Σ0
2

I R(e, c)⇔df c is a pumping constant for We

Lemma
TOT ≤rec R

Theorem
f is not learnable

Proof.
Suppose the contrary. Then Graph(f) ∈ Σ0

2. We have:
R(x , y)⇔ ∃c((x , c) ∈ Graph(f) ∧ c ≤ y)⇔ ∃(∃∀ . . . ∧ . . .). So
R ∈ Σ0

2. But by lemma TOT ≤rec R. Hence, TOT ∈ Σ0
2.

How complex oracle does make f learnable?

We need

I HALT = the halting problem = {(e, x) : x ∈We}
I ≤bl - bounded lexicographical order on words

I Gold’s lemma: f is learnable ⇔ Graph(f) ∈ Σ0
2

Theorem
f is learnable in HALT.

Proof.
R(e, x)⇔

(∀ω) {
rec. in HALT︷ ︸︸ ︷

[ω ∈We ∧ . . .]⇒ (∃α, β, γ ≤bl ω)[
rec.︷︸︸︷. . . ∧ (∀ i)

rec. in HALT︷ ︸︸ ︷
αβiγ ∈We)]}

R(e, x)⇔ ∀[. . .⇒ ∀ . . .], so R ∈ Π0
1 in HALT.

(e, x) ∈ Graph(f)⇔ R(e, x)︸ ︷︷ ︸
Π0

1 in HALT

∧ (∀ y < x)¬R(e, y)︸ ︷︷ ︸
Σ0

1 in HALT

Hence, Graph(f) ∈ Σ0
2 in HALT and f is learnable in HALT.

How complex is R?

We need

I HALT = the halting problem = {(e, x) : x ∈We}
I TOT = {e : We = N}
I TOT is Π0

2-complete

I R(e, c)⇔df c is a pumping constant for We

Lemma
TOT ≤rec R

Theorem
R is Π0

2-complete

Proof.
R is Π0

2-hard, since TOT ≤rec R
x ∈We ⇔ ∃ c T (e, x , c), T - Kleene predicate
R(e, x)⇔ ∀[∃ . . .⇒ ∃≤blω(. . . ∧ ∀∃ . . .)] Hence, R ∈ Π0

2.

f - exact place in arithmetical hierarchy

Lemmas

I Graph(f) ∈ ∆0
3 (see paper)

I Graph(f) /∈ Σ0
2 (proved)

I R(e, c)⇔df c is a pumping constant for We

I R is Π0
2-complete (proved)

Theorem
Graph(f) ∈ ∆0

3 − (Σ0
2 ∪ Π0

2)

Proof.
We show Graph(f) /∈ Π0

2. Suppose the contrary.
Now show R ≤T Graph(f). Algorithm with oracle Graph(f) that
computes χR : on input (e, x) output YES iff (e, y) ∈ Graph(f)
holds for some y ≤ x . Hence, R ≤T Graph(f).
Since R is Π0

2-complete, R is Σ0
2-complete. Let A ∈ Σ0

2. We have
A ≤T R ≤T Graph(f). Then Σ0

2 ⊆ Π0
2.

Final remarks

I what about other input representations?
I CFGs: f learnable
I oracle for characteristic function

I f learnable
I use in language identification?

I time bounded Turing machines
I f learnable

Thanks for your attention!

