On Computability and Learnability of the Pumping Lemma Function

Dariusz Kalociński
University of Warsaw, Poland

March 11, 2014
$8^{\text {th }}$ International Conference, LATA 2014

Structure

- what is the pumping lemma function?
- how complex is it?
- computable?
- learnable?
- exact placement of the function in the arithmetical hierarchy

Structure

- what is the pumping lemma function?
- how complex is it?
- computable?
- learnable?
- exact placement of the function in the arithmetical hierarchy
- on the way: we get a ,,natural" Π_{2}^{0}-complete problem
- final remarks

Pumping Lemma (for Regular Languages)

For regular $L \subseteq \Sigma^{*}(\exists c>0)$

Pumping Lemma (for Regular Languages)

For regular $L \subseteq \Sigma^{*} \quad(\exists c>0)$
$(\forall \omega \in L,|\omega| \geq c)(\exists \alpha \beta \gamma):$

- $\alpha \beta \gamma=\omega$
- $|\alpha \beta| \leq c$
- $\beta \neq \varepsilon$
- $(\forall i \in \mathbb{N}) \alpha \beta^{i} \gamma \in L$

Pumping Lemma (for Regular Languages)

For regular $L \subseteq \Sigma^{*} \quad(\exists c>0)$
$(\forall \omega \in L,|\omega| \geq c)(\exists \alpha \beta \gamma):$

- $\alpha \beta \gamma=\omega$
- $|\alpha \beta| \leq c$
- $\beta \neq \varepsilon$
- $(\forall i \in \mathbb{N}) \alpha \beta^{i} \gamma \in L$
- $\phi(L, c)$ - formula in yellow box
- $\phi(L, c)$ means: for given L, c is the witness for $\exists c$
- c satisfying $\phi(L, c)$ is called a pumping constant for L

Problem

Input: arbitrary L
Output: the least pumping constant for L (if exists)

- we focus on r.e. languages
- $W_{e}=$ the domain of the $e^{t h}$ algorithm
- L is r.e. $\Leftrightarrow \exists e\left(L=W_{e}\right)$
- $R(e, c) \Leftrightarrow_{d f} c$ is a pumping constant for W_{e}

Pumping Lemma Function

$$
f(e)= \begin{cases}\text { the least } c \text { st. } R(e, c) & \text { if } \exists c R(e, c) \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Questions

$$
\begin{aligned}
& R(e, c) \Leftrightarrow_{d f} c \text { is a pumping constant for } W_{e} \\
& f(e)= \begin{cases}\text { the least } c \text { st. } R(e, c) & \text { if } \exists c R(e, c) \\
\text { undefined } & \text { otherwise }\end{cases}
\end{aligned}
$$

$\operatorname{Graph}(f)=$ the graph of $f=\{(x, y): f(x)=y\}$
How complex are f and R ?

- is f computable?
- is $\overline{\operatorname{Graph}(f)}$ r.e.?
- is f algorithmically learnable?
- if not, how strong oracle we need to make f learnable?
- how exactly does $\operatorname{Graph}(f)$ fit in arithmetical hierarchy?
- how exactly does R fit in arithmetical hierarchy?

Is f computable?

We need

- EMPTY $=\left\{e \in \mathbb{N}: W_{e}=\emptyset\right\}$
- EMPTY is Π_{1}^{0}-complete
- $\leq_{\text {rec }}$ - reducibility via recursive function
- $R(e, c) \Leftrightarrow_{d f} c$ is a pumping constant for W_{e}

Lemmas

- EMPTY $\leq_{\text {rec }} R$
- If $R(e, c)$ then $(\forall d>c) R(e, d)$.

Theorem
f is not computable

Proof.

Suppose the contrary. Then R is Σ_{1}^{0}. Let $A \in \Pi_{1}^{0}$. $A \leq_{\text {rec }} \mathrm{EMPTY} \leq_{\text {rec }} R \in \Sigma_{1}^{0}$. Hence, $\Pi_{1}^{0} \subseteq \Sigma_{1}^{0} .\{$

Is $\overline{\operatorname{Graph}(f)}$ r.e.?
We need

- EMPTY $=\left\{e \in \mathbb{N}: W_{e}=\emptyset\right\}$
- EMPTY is Π_{1}^{0}-complete
- $\leq_{\text {rec }}$ - reducibility via recursive function
- $R(e, c) \Leftrightarrow_{d f} c$ is a pumping constant for W_{e}

Lemmas

- $\overline{\operatorname{Graph}(f)} \in \Sigma_{1}^{0} \Rightarrow \bar{R} \in \Sigma_{1}^{0}$
- $\overline{\text { EMPTY }} \leq_{\text {rec }} R$

Theorem
$\overline{\operatorname{Graph}(f)}$ is not r.e.
Proof.
Suppose the contrary. By lemma $\bar{R} \in \Sigma_{1}^{0}$. Since $\overline{\text { EMPTY }} \leq_{r e c} R$, then EMPTY $\leq_{\text {rec }} \bar{R}$. Hence, $\Pi_{1}^{0} \subseteq \Sigma_{1}^{0}$. \dot{z}

Learnability

Definition

$f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ (possibly partial) is learnable if there is a total computable function $g_{t}(\bar{x})$ st. for all $\bar{x} \in \mathbb{N}^{k}$:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} g_{t}(\bar{x})=f(\bar{x}) \tag{1}
\end{equation*}
$$

which means that one of the two conditions hold:

- neither $f(\bar{x})$ nor $\lim _{t \rightarrow \infty} g_{t}(\bar{x})$ exist
- both $f(\bar{x})$ and $\lim _{t \rightarrow \infty} g_{t}(\bar{x})$ exist and are equal

Example

$f(x)=5$

Is f learnable?

We need

- TOT $=\left\{e: W_{e}=\Sigma^{*}\right\}$
- TOT is Π_{2}^{0}-complete
- Gold's lemma: f is learnable $\Leftrightarrow \operatorname{Graph}(f) \in \Sigma_{2}^{0}$
- $R(e, c) \Leftrightarrow_{d f} c$ is a pumping constant for W_{e}

Lemma
TOT $\leq_{\text {rec }} R$
Theorem
f is not learnable
Proof.
Suppose the contrary. Then $\operatorname{Graph}(f) \in \Sigma_{2}^{0}$. We have:
$R(x, y) \Leftrightarrow \exists c((x, c) \in \operatorname{Graph}(f) \wedge c \leq y) \Leftrightarrow \exists(\exists \forall \ldots \wedge \ldots)$. So $R \in \Sigma_{2}^{0}$. But by lemma TOT $\leq_{\text {rec }} R$. Hence, TOT $\in \Sigma_{2}^{0}$. z

How complex oracle does make f learnable?

We need

- HALT $=$ the halting problem $=\left\{(e, x): x \in W_{e}\right\}$
- \leq_{b} - bounded lexicographical order on words
- Gold's lemma: f is learnable $\Leftrightarrow \operatorname{Graph}(f) \in \Sigma_{2}^{0}$

Theorem
f is learnable in HALT.
Proof.
$R(e, x) \Leftrightarrow$
$(\forall \omega)\{\overbrace{\left[\omega \in W_{e} \wedge \ldots\right]}^{\text {rec. in HALT }} \Rightarrow(\exists \alpha, \beta, \gamma \leq b \mid \omega)[\overbrace{\cdots}^{\text {rec. }} \wedge(\forall i) \overbrace{\left.\alpha \beta^{i} \gamma \in W_{e}\right)}^{\text {rec. in HALT }}]\}$
$R(e, x) \Leftrightarrow \forall[\ldots \Rightarrow \forall \ldots]$, so $R \in \Pi_{1}^{0}$ in HALT.
$(e, x) \in \operatorname{Graph}(f) \Leftrightarrow \underbrace{R(e, x)}_{\Pi_{1}^{0} \text { in HALT }} \wedge \underbrace{(\forall y<x) \neg R(e, y)}_{\Sigma_{1}^{0} \text { in HALT }}$
Hence, $\operatorname{Graph}(f) \in \Sigma_{2}^{0}$ in HALT and f is learnable in HALT.

How complex is R ?

We need

- HALT $=$ the halting problem $=\left\{(e, x): x \in W_{e}\right\}$
- TOT $=\left\{e: W_{e}=\mathbb{N}\right\}$
- TOT is Π_{2}^{0}-complete
- $R(e, c) \Leftrightarrow_{d f} c$ is a pumping constant for W_{e}

Lemma
TOT $\leq_{\text {rec }} R$
Theorem
R is Π_{2}^{0}-complete
Proof.
R is Π_{2}^{0}-hard, since TOT $\leq_{\text {rec }} R$
$x \in W_{e} \Leftrightarrow \exists c T(e, x, c), T$ - Kleene predicate
$R(e, x) \Leftrightarrow \forall[\exists \ldots \Rightarrow \exists \leq \Delta \omega(\ldots \wedge \forall \exists \ldots)]$ Hence, $R \in \Pi_{2}^{0}$.

f - exact place in arithmetical hierarchy

Lemmas

- $\operatorname{Graph}(f) \in \Delta_{3}^{0}$
- $\operatorname{Graph}(f) \notin \Sigma_{2}^{0}$
- $R(e, c) \Leftrightarrow_{d f} c$ is a pumping constant for W_{e}
- R is Π_{2}^{0}-complete

Theorem
$\operatorname{Graph}(f) \in \Delta_{3}^{0}-\left(\Sigma_{2}^{0} \cup \Pi_{2}^{0}\right)$
Proof.
We show $\operatorname{Graph}(f) \notin \Pi_{2}^{0}$. Suppose the contrary.
Now show $R \leq_{T} \operatorname{Graph}(f)$. Algorithm with oracle $\operatorname{Graph}(f)$ that computes χ_{R} : on input (e, x) output YES iff $(e, y) \in \operatorname{Graph}(f)$ holds for some $y \leq x$. Hence, $\bar{R} \leq_{T} \operatorname{Graph}(f)$.
Since R is Π_{2}^{0}-complete, \bar{R} is Σ_{2}^{0}-complete. Let $A \in \Sigma_{2}^{0}$. We have $A \leq_{T} \bar{R} \leq_{T} \operatorname{Graph}(f)$. Then $\Sigma_{2}^{0} \subseteq \Pi_{2}^{0}$.

Final remarks

- what about other input representations?
- CFGs: f learnable
- oracle for characteristic function
- f learnable
- use in language identification?
- time bounded Turing machines
- f learnable

Thanks for your attention!

